Preparation of 2-, 3-, 4- and 7-(2-alkylcarbamoyl-1-alkylvinyl)benzo[*b*]furans and their BLT₁ and/or BLT₂ inhibitory activities \dagger

Kumiko Ando,^a Yoko Kawamura,^a Yukiko Akai,^a Jun-ichi Kunitomo,^a Takehiko Yokomizo,^b Masayuki Yamashita,^c Shunsaku Ohta,^c Takahiro Ohishi^d and Yoshitaka Ohishi^{*a}

Received 17th July 2007, Accepted 26th October 2007

First published as an Advance Article on the web 29th November 2007 DOI: 10.1039/b710935k

Several 2-alkylcarbamoyl-1-alkylvinylbenzo[*b*]furans were designed to find a selective leukotriene B_4 (LTB₄) receptor antagonist. 2-(2-Alkylcarbamoyl-1-alkylvinyl)benzo[*b*]furans having a substituent group at the 3-position, 4-(2-alkylcarbamoyl-1-methylvinyl)benzo[*b*]furans having a substituent group at the 3-position, and 7-(2-alkylcarbamoyl-1-methylvinyl)benzo[*b*]furans and 3-(2-alkylcarbamoyl-1-alkylvinyl)benzo[*b*]furans were prepared and evaluated for LTB₄ receptor (BLT₁ and BLT₂) inhibitory activities. (*E*)-3-Amino-4-[2-[2-(3,4-dimethoxyphenyl)ethylcarbamoyl]-1-methylvinyl]benzo[*b*]furan ((*E*)-17c) showed potent and selective inhibitory activity for BLT₂. On the other hand, (*E*)-7-(2-diethylcarbamoyl-1-methylvinyl)benzo[*b*]furan ((*E*)-27a) showed potent inhibitory activity for both BLT₁ and BLT₂.

Introduction

Leukotriene B_4 (LTB₄), a dihydroxy fatty acid formed from arachidonic acid by the 5-lipoxygenase pathway, is a potent chemoattractant of leukocytes, which are involved in various inflammatory diseases. The LTB₄ receptor is a target for antiinflammatory drugs, and many antagonists of it have been developed and are being evaluated but none have yet been approved for clinical use.¹

Recently, two G-protein-coupled receptors for LTB₄ have been identified.²⁻⁶ BLT₁ is a high affinity receptor exclusively expressed in leukocytes, while BLT₂ is a low affinity receptor expressed more extensively. Current studies on LTB₄ receptors (BLT₁, BLT₂) suggest the possibility of new clinical drugs being developed for the treatment of asthma,⁷⁻⁹ pancreatic cancer,^{10,11} arteriosclerosis^{12,13} and rheumatoid arthritis.¹⁴⁻¹⁶

We previously reported preparation of various (*E*)-2- and 4-(2-alkylcarbamoyl-1-methylvinyl)benzo[*b*]furans (type **A** and **B** compounds) (Fig. 1) and inhibitory activities of their selective LTB₄ receptors (BLT₁, BLT₂).^{17,18} The study revealed a significant relationship between the conformation of the (*E*)-2-alkylcarbamoyl-1-methylvinyl group and BLT₁ and/or BLT₂ inhibitory activity. The type **A** compound, in which the (*E*)-2-(2alkylcarbamoyl-1-methylvinyl) group lies on nearly the same plane

as the benzo[*b*]furan ring, shows selective BLT₂ inhibitory activity. On the other hand, the type **B** compound having some torsion angle (*ca.* 46°) between the (*E*)-4-(2-alkylcarbamoyl-1-methylvinyl) group and the benzo[*b*]furan ring shows both BLT₁ and BLT₂ inhibitory activities. These findings encouraged us to prepare several new series of 2-alkylcarbamoyl-1-alkylvinylbenzo[*b*]furans to find more potent and selective BLT₁ and/or BLT₂ inhibitors.

We designed type **C**, **D**, **E**, **F** and **G** compounds (Fig. 2) on the basis of lead compounds **A** and **B**. Type **C** and **E** compounds have a substituent group neighboring the 2-alkylcarbamoylvinyl group. This neighboring group may force the 2-alkylcarbamoylvinyl group into a twisted steric position. On the type **D** compound, the methyl group on the 2-alkylcarbamoyl-1-methylvinyl group of type **A** compound was replaced with a hydrogen atom or a phenyl group. Type **F** and **G** compounds have the 2-alkylcarbamoyl-1-methylvinyl group at the 3- and 7-positions, respectively.

We describe here the preparation of the designed compounds and their inhibitory activities for BLT_1 and/or BLT_2 .

Results and discussion

Chemistry

Preparation of type C compound. Preparations of the starting materials (3, 7) used to prepare the type C, D, F and G compounds are shown in Scheme 1 and 2.

[&]quot;School of Pharmaceutical Sciences, Mukogawa Women's University, 11– 68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan. E-mail: yohishi@ mukogawa-u.ac.jp; Fax: +798 45 9953; Tel: +798 45 9953

^bDepartment of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan ^cKyoto Pharmaceutical University, Misasagi, Yamashinaku, Kyoto 607-8412, Japan

^dScience of Environment and Mathematical Modeling, Graduate School of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan

[†] Electronic supplementary information (ESI) available: Physical data and yields of compounds 2, 3, 5–15, 17–21 and 23–31. See DOI: 10.1039/b710935k

[‡] CCDC reference numbers 662142 and 664905. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b710935k

Scheme 1 (a) BrCH₂COC₆H₄(4-H or Cl), K₂CO₃, acetone; (b) PPA.

Alkylation of phenols (**1a**, **1b**) by using phenacyl bromides afforded **2a** and **2b**, which were converted to 3-phenylbenzo[*b*]furans (**3a**, **3b**) by heating with polyphosphoric acid (Scheme 1).^{19,20}

Several 2- or 3-alkylbenzo[*b*]furans (7) were prepared from the corresponding 2-acylphenols (4) according to the procedure reported by Brady *et al.*^{21,22} Salicylaldehydes (4a–4d) were treated with ethyl 2-bromopropionate to give the corresponding *O*-alkyl compounds, which were hydrolyzed to carboxylic acids (5a, 5b, 5d, 5e). On the other hand, a reaction of 4b with ethyl 2-bromophenylacetate afforded 2,3-dihydro-3-hydroxybenzo[*b*]furan (6). Ring closure reaction of compounds (5a, 5b, 5d, 5e) with sodium acetate and acetic anhydride gave 2-alkylbenzo[*b*]furans (7a, 7b, 7d, 7e). 2,3-Dihydroxy-3-hydroxybenzo[*b*]furan (6) was converted to 2-phenylbenzo[*b*]furan (7c) under the same conditions. Similarly, 3-alkylbenzo[*b*]furans (7f–7h) were prepared starting from 2-acylphenols (4e–4g) *via O*-alkyl compounds (5f–5h) (Scheme 2).

The conformation of the 2-alkylcarbamoyl-1-methylvinyl group of the lead compounds **A** and **B** affected the inhibitory activities of BLT_1 and/or BLT_2 .^{17,18} Thus, we prepared 3-alkyl-2-[(2-alkylcarbamoyl)-1-alkylvinyl]benzo[*b*]furans (type **C** compound, **9**, **11**) with steric hindrance between the 3-substituent group and the 2-alkylcarbamoylvinyl group at the 2-position (Scheme 3).

Acylation of 3-alkylbenzo[*b*]furans (**3a**, **3b**, **7f**) with acyl chlorides gave 3-alkyl-2-acylbenzo[*b*]furans (**8a–8d**). Treatment of **8** with several *N*-alkyl diethylphosphonoacetamides in the presence of NaH under the Horner–Wadsworth–Emmons (HWE) reaction conditions²³⁻²⁵ afforded 3-alkyl-2-(2-alkylcarbamoyl-1-alkylvinyl)benzo[*b*]furans ((E/Z)-9a–9g) as a mixture of *E*- and *Z*-isomers. Each predominant *E*-isomer (9a–9g) was isolated from the mixture by column chromatography.

E-Isomers ((*E*)-11a, 11b) were selectively prepared from 2-bromobenzo[*b*]furans (10) under the Heck reaction conditions.^{26,27} Bromination of 3-ethylbenzo[*b*]furan (7h) with NBS gave 2-bromo-3-ethylbenzo[*b*]furan (10) which was treated with *N*-alkylcrotonamides prepared in our laboratory^{17,18} in the presence of palladium acetate, tri-*o*-tolylphosphine and triethylamine to selectively afford (*E*)-2-(2-alkylcarbamoyl-1-methylvinyl)-3-ethylbenzo[*b*]furans (11a, 11b) (Scheme 3).

 $Preparation \ of \ type \ D \ compound.$ To examine the effect of the substituent group on the olefinic carbon of the type A

Scheme 2 (a) (i) BrCH(R⁴)COOC₂H₅, K₂CO₃, CH₃CN; (ii) K₂CO₃, H₂O, CH₃OH; (b) CH₃COONa, (CH₃CO)₂O.

Scheme 3 (a) R^4 COCl, AlCl₃, CHCl₅; (b) ($C_2H_5O_2POCH_2CONR^5R^6$, NaH, THF; (c) NBS, CH₃CN; (d) CH(CH₃)=CHCONR¹R², Pd(CH₃COO)₂, P(*o*-tolyl)₃, N(C_2H_5)₃.

compound on the inhibitory activity for BLT_1 and/or BLT_2 , 2-(2-alkylcarbamoylvinyl) compounds (13) and 2-(2-alkylcarbamoyl-1-phenylvinyl) compounds (15), both type **D** compounds, were prepared (Scheme 4, 5).

Scheme 4 (a) SeO₂, 1,4-dioxane; (b) $(C_2H_3O)_2POCH_2CONR^1R^2$, NaH, THF.

Oxidation of 2-methylbenzo[*b*]furan (7e) using SeO_2^{28} gave 2-formylbenzo[*b*]furan (12) which was treated with *N*-alkyl diethylphosphonoacetamides under the HWE reaction conditions to selectively afford (*E*)-2-(2-alkylcarbamoylvinyl)benzo[*b*]furans ((*E*)-13a-13c) (Scheme 4).

Ring closure reactions of salicylaldehydes (4a, 4d) with phenacylbromides were achieved to afford 2-benzoylbenzo[b]furans (14a–14f).^{29–31} 2-Benzoyl compounds (14) were treated with *N*-alkyl diethylphosphonoacetamides under the HWE reaction conditions to afford a corresponding mixture of *E*- and *Z*-isomers of 2-(2-alkylcarbamoyl-1-phenylvinyl)benzo[b]furans ((*E*/*Z*)-15a–15l), in which the *Z*-isomers (*Z*-15) were preferentially prepared (Scheme 5). On the contrary, the 2-acetylbenzo[b]furans (8) predominantly gave the *E*-isomers (9) (see Scheme 3).

Preparation of type E compound. Preparation of 4-(2alkylcarbamoyl-1-methylvinyl)benzo[b]furans (type E compounds 17, 19) having a substituent group at the 3-position is shown in Scheme 6. 3-Amino-4-bromobenzo[b]furans (16a, 16b)³² were treated with N-alkylcrotonamides under Heck reaction conditions to obtain (E)-3-amino-4-(2-alkylcarbamoyl-1-methylvinyl)benzo[b]furans ((E)-17a-17f). X-Ray analysis of (E)-17c was examined to check the steric effect of the 3-amino group on conformation of the 2-alkylcarbamoyl-1-methylvinyl group at the 4-position. The stereostructure of (E)-17c was determined by Xray analysis as shown in Fig. 3.33 The torsion angle between the 2-[2-(3,4-dimethoxyphenyl)ethylcarbamoyl]-1-methylvinyl group and the benzo[b]furan ring of (E)-17c was 87.0° . Introduction of the amino substituent group at the 3-position forced the 2-[2-(3,4-dimethoxyphenyl)ethylcarbamoyl]-1-methylvinyl group at the 4-position to be orthogonal to the benzo[b]furan ring plane.

Fig. 3 X-Ray structures of (*E*)-17c.

Acylation of 16 with acyl chlorides gave 3-acylamino-4-bromobenzo[b]furans (18). Treatment of 18 with several N-alkylcrotonamides under Heck reaction conditions afforded the corresponding (E)-3-acylamino-4-(2-alkylcarbamoyl-1-methlvinyl)benzo[b]furans ((E)-19a-19j) (Scheme 6).

Preparation of type F compound. Type A–E compounds have a 2-alkylcarbamoyl-1-alkylvinyl group at the 2- and 4-positions.

Scheme 5 (a) $BrCH_2COC_6H_4R^3$, K_2CO_3 , CH_3CN ; (b) $(C_2H_5O)_2POCH_2CONR^4R^5$, NaH, THF; (c) $C_{12}H_{25}SH$, AlCl₃, CHCl₃; (d) $BrCH(CH_3)C_6H_5$, K_2CO_3 , CH_3CN .

Scheme 6 (a) $CH(CH_3)=CHCONR^3R^4$, $Pd(CH_3COO)_2$, $P(o-tolyl)_3$, $N(C_2H_5)_3$; (b) R^2COCl , THF; (c) $C_{12}H_{25}SH$, $AlCl_3$, $CHCl_3$; (d) $BrCH(CH_3)C_6H_5$, K_2CO_3 , CH_3CN .

Preparation of the novel type **F** compound having a 2-alkylcarbamoyl-1-alkylvinyl group at the 3-position was achieved as shown in Scheme 7, 8.

Friedel–Crafts acylation of **7a–7d** afforded 3-aceyl-(**20a–20d**), 3-(3-bromopropionyl)-(**20e**) and 3-(3-ethoxycarbonylpropionyl)-benzo[*b*]furans (**20f**). Treatment of acyl compounds (**20a–20d**,

Scheme 7 (a) R^3 COCl, AlCl₃, CHCl₃; (b) (C₂H₅O)₂POCH₂CONR⁴R⁵, NaH, THF; (c) NBS, CH₃CN; (d) CH(CH₃)=CHCONR⁴R⁵, Pd(CH₃COO)₂, P(*o*-tolyl)₃, N (C₂H₅)₃.

(*E*)-26a - 26c

Scheme 8 (a) SeO₂, 1,4-dioxane; (b) $(C_2H_3O)_2POCH_2CONR^{\dagger}R^2$, NaH, THF.

20f) with *N*-alkyl diethylphosphonoacetamides under HWE reaction conditions afforded a mixture of *E*- and *Z*-isomers of 3-(2-alkylcarbamoyl-1-alkylvinyl)benzo[*b*]furans ((E/Z)-**21a–21o**). Interestingly, 5-bromo-3-[4-(diethoxyphosphoryl)-4-alkylcarbamoylbutyryl]-2-methylbenzo[*b*]furans (**22a**, **22b**) were obtained by treatment of 3-(3-bromopropionyl)benzo[*b*]furan

(20e) with *N*-alkyl diethylphosphonoacetamides under similar conditions (see Scheme 7). Alkyl bromide (20e) reacted with the active methylene group of *N*-alkyl diethylphosphonoacetamides in the presence of NaH and formed a carbon–carbon bond.³⁴

Bromination of 2-*n*-butylbenzo[*b*]furan (7i) with NBS gave 3-bromo-2-*n*-butylbenzo[*b*]furan (23). The compound (23) was treated with *N*-alkylcrotonamides under Heck reaction conditions to selectively afford (*E*)-3-(2-alkylcarbamoyl-1-methylvinyl)-2-*n*-butylbenzo[*b*]furans ((*E*)-24a-24c) (Scheme 7).

Oxidation of 3-methylbenzo[*b*]furan (7g) using SeO₂ afforded 3-formylbenzofurane (25). Treatment of 25 with several *N*-alkyl diethylphosphonoacetamides under HWE reaction conditions afforded the corresponding (*E*)-3-(2-alkylcarbamoylvinyl)benzo-[*b*]furans ((*E*)-26a-26c), similar to the preparation of 13.

Preparation of type G compound. The novel type G compounds (27, 31) having a 2-alkylcarbamoyl-1-methylvinyl group at the 7-position were prepared as follows. Treatment of 7-bromo-2-(3-ethoxycarbonylpropionyl)-3-phenylbenzo[*b*]furan (8c) with *N*-alkylcrotonamides under Heck reaction conditions selectively afforded the corresponding (*E*)-7-(2-alkylcarbamoyl-1-methylvinyl)-3-phenylbenzo[*b*]furans ((*E*)-27a, 27b, 27d) (Scheme 9).

Scheme 9 (a) $CH(CH_3)=CHCONR^1R^2$, $Pd(CH_3COO)_2$, P(o-tolyl), $(C_2H_3)_3N$; (b) NaOH, H_2O , CH_3OH .

Bromonation of 5-chlorosalicylaldehyde (4b) gave 3-bromo-5chloro-2-hydroxybenzaldehyde (28) which was converted to 3bromo-5-chloro-2-hydroxybenzonitrile (29).^{35,36} Reaction of 29 with chloroacetone afforded 3-aminobenzo[*b*]furan (30a) which was treated with ethyl succinyl chloride to give 2-acetyl-7-bromo-3-ethoxycarbonylpropionylaminobenzo[*b*]furan (30c). Reaction of 28 with chloroacetone afforded 3-acetylbenzo[*b*]furan (30b). Treatment of 30b and 30c with *N*-alkylcrotonamides under Heck reaction conditions afforded the corresponding (*E*)-7-(2alkylcarbamoyl-1-methylvinyl)benzo[*b*]furans ((*E*)-31a, 31b), respectively (Scheme 10).

Biological activity

The compounds prepared were evaluated for LTB₄ receptor inhibitory activity by measurement of the inhibition of calcium mobilization in both CHO cells overexpressing human BLT₁ (BLT₁) and human BLT₂ (BLT₂) at the concentration of 10 μ M.^{2,4,17,18}

We checked the effectiveness of introducing a substituent group at the 3-position of the 4-(2-alkylcarbamoylvinyl-1-methylvinyl)benzo[b]furans for BLT₁ and/or BLT₂ inhibitory

activities (Table 1, type E compound). 4-[2-[2-(3,4-Dimethoxyphenyl)ethylcarbamoyl]-1-methylvinyl]benzo[b]furan ((E)-36,¹⁸ type A compound) having no substituent group at the 3-position showed only weak inhibitory activities (BLT₁, 10.8% inhibition; BLT₂, 29.7% inhibition). Interestingly, 3-amino-4-[2-[2-(3,4dimethoxyphenyl)ethylcarbamoyl] - 1 - methylvinyl]benzo[b]furan ((E)-17c) showed potent activity and 12-fold selectivity for BLT_2 over that for BLT_1 (BLT_1 , 7.4% inhibition; BLT_2 , 92.6% inhibition). The torsion angle of (*E*)-17c was 87.0° on the basis of the X-ray analysis as described above. We previously reported that the 3-unsubstitued-4-(2-alkylcarbamoyl-1-methylvinyl) compound (type B compound, (E)-35, -3618) had the torsion angle (ca. 46°) between the 2-alkylcarbamoyl-1-methylvinyl group and the benzo[b]furan ring plane. The torsion angle of (E)-17c was larger than that of the type **B** compounds. Introduction of the substituent group at the 3-position forced the 2-[2-(3,4-dimethoxyphenyl)ethylcarbamoyl]-1-methylvinyl group at the 4-position to twist more. The compound ((E)-17c) having the larger torsion angle (87.0°) inhibited BLT₂ selectively; on the other hand, the type B compounds bearing the smaller torsion angle (*ca.* 46°) inhibited both BLT₁ and BLT₂.

Scheme 10 (a) NBS, $CHCl_3$; (b) (i) $HONH_2$ ·HCl, pyridine, CH_3OH ; (ii) CH_3COONa , $(CH_3CO)_2O$; (iii) K_2CO_3 , H_2O , CH_3OH ; (c) $CICH_2COCH_3$, K_2CO_3 , CH_3CN ; (d) $CICOCH_2CH_2COOC_2H_3$, THF; (e) $CH(CH_3)=CHCONR^2R^3$, $Pd(CH_3COO)_2$, P(o-tolyl), $N(C_2H_3)_3$.

				BLT_2	0.48
			IC ₅₀ /µM	BLT1	0.42
			(%)/10 μM	BLT_2	11.9 16.1 92.6 3.4 N. I. N. I. 92.8 29.7 tt 100 nM.
a			Inhibition	BLT_1	N. I. N. I. 7.4 15.8 N. I. 8.5 N. I. 92.6 10.8 10.8 ated by LTB4 ^a
BLT_1 , BLT_2) inhibitory activity	1 ³ COC ^N , R ⁶ COCH ₃	OR ³ OR ³ (E)-35, -36		${f R}^5$	$\begin{array}{c} C_{2}H_{5}\\ (CH_{2})^{2}-\\ (CH_{2})_{2}C_{6}H_{3}(3,4\text{-OCH}_{3})\\ C_{2}H_{5}\\ (CH_{2})_{2}C_{6}H_{3}(3,4\text{-OCH}_{3})\\ C_{2}H_{5}\\ (CH_{2})^{2}-\\ C_{2}H_{5}\\ (CH_{2})_{2}C_{6}H_{3}(3,4\text{-OCH}_{3})\\ (CH_{2})^{2}C_{6}H_{3}(3,4\text{-OCH}_{3})\\ (CH_{2})^{2}C_{6}H_{3}(4,4\text{-OCH}_{3})\\ ($
LTB4 receptor (5 \R ⁴ NHCOR ² + -COCH ₃			\mathbb{R}^4	C ₂ H ₅ -(CH ₂) ₂ O(H C ₂ H ₅ C ₂ H ₅ -(CH ₂) ₂ O(C ₂ H ₅ H H D-hBLT ₂ cells, u
-17, -19, -35, -36) for	∝-z 5 £	осн ₃ (Е)-19		\mathbb{R}^3	
viny]benzo[b]furans ((E)		o ocH ₃ (E)-17		\mathbb{R}^2	
)-2-alkylcarbamoy				\mathbb{R}^1	CH ₃ CH ₃ CH ₄ (4-Cl) C ₆ H ₄ (4-Cl) - - - calcium mobilizati
ations of 4-[(E				Type	EEEEE EEEEE BB Cd." Effect of
Table 1 Evalua				Compound	$\begin{array}{l} (E) - 17a \\ (E) - 17b \\ (E) - 17c \\ (E) - 17d \\ (E) - 19b \\ (E) - 19b \\ (E) - 19d \\ (E) - 19e \\ (E) - 35^{b} \\ (E) - 36 \\ (E) - 36 \end{array}$

(E)-7-(2-Alkylcarbamoyl-1-methylvinyl)-2-ethoxycarbonylpropionylbenzo[b]furans (type G compound, (E)-27, -31) were found to be potently active against LTB_4 receptors (Table 2). The 3-ethoxycarbonylpropionyl moiety present in these compounds is effective for displaying the inhibitory activity in our current study.^{1,2} The compound ((E)-27a), having a 2-diethylcarbamoyl-1-methylvinyl group at the 7-position, was the most active against both BLT_1 and BLT_2 (BLT₁, 73.7% inhibition, BLT₂, 95.7% inhibition). In contrast, (E)-7-[2-[2-(3,4-dimethoxyphenyl)ethylcarbamoyl]-1-methylvinyl]benzo[b]furan ((E)-27b) showed an approximately 6-fold potency for BLT_2 over that for BLT_1 (BLT₁, 14.7% inhibition; BLT₂, 86.3% inhibition). The acidic compound (E)-27e was inactive. The compound (E)-31a having the ethoxycarbonylpropionyl moiety at the 3-position also showed moderate activity. The type G compound showed more potent activity for BLT₂ than for BLT₁.

Here let us consider the efficacy of introducing a substituent group at the 3-position of 2-alkylcarbamoylvinylbenzo[*b*]furans for the inhibitory activity for BLT₁ and/or BLT₂ (Table 3). The compound (*E*)-**33**,¹⁸ having a 2-(4-methoxyphenylcarbamoyl)-1-methylvinyl group at the 2-position, showed no inhibitory activity. (*E*)-**9d**, having the same functional group at the 2-position as (*E*)-**33**, was given a phenyl group at the 3-position. (*E*)-**9d** did not show any activity either. Unfortunately, introduction of the substituent group at the 3-position did not enhance the inhibitory activity.

Replacement of the methyl group (type A compound, (Z)-34¹⁸) by a phenyl group (type D compound, (Z)-15b, -15c, -15f) did not enhance the inhibitory activity (Table 3). In the preparation of (E/Z)-15, Z-isomers were preferentially formed and isolated. We previously reported that the Z-isomer of type A showed lower inhibitory activity than the E-isomer (Table 3, (E)-34¹⁸ and (Z)-34). The Z-isomers of type D might also have lower activity than the E-isomers, similar to the case of the type A compound. Unfortunately, (E)-21, -24, -26 (type F), having a 2alkylcarbamoylvinyl group at the 3-position, prepared in this study were inactive (Table 4).

LTB₄ receptor antagonists have been reported to show antipancreatic cancer activity.^{10,11} Therefore, we tested representative compounds ((*Z*)-15f, (*E*)-17a, (*E*)-21c, 22b) and a selective BLT₂ inhibitory compound (32)^{17,18} for anti-pancreatic cancer activity using a human pancreatic cancer cell line (MiaPaCa-2). However, none of the compounds showed any growth inhibition of MiaPaCa-2 at 10 μ M (data not shown). Human pancreatic cancer cells have been reported to express both BLT₁ and BLT₂.¹¹ Inhibitors of both BLT₁ and BLT₂ will be advantageous for displaying growth inhibitory activity against human pancreatic cancer cells. Both the BLT₁ and BLT₂ inhibitory compounds prepared in our current study are being tested for anti-pancreatic cancer activity.

In summary, selective BLT_2 inhibitors (type **A**) and both BLT_1 and BLT_2 inhibitors (type **B**) showed a significant relationship between the conformation of the (*E*)-2-alkylcarbamoyl-1-methylvinyl group and BLT_1 and/or BLT_2 inhibitory activity in our previous study. In this study, type **C** and **E** compounds, having a substituent group at the 3-position, which may affect the conformation of the 2-alkylcarbamoyl-1-methylvinyl group, were prepared. As expected, 4-(2-alkylcarbamoyl-1-methylvinyl)benzo[*b*]furan (type **E**, (*E*)-17c), with a substituent group introduced at the 3-position, has a larger torsion angle

Table 3 Evaluations of 3-[(E)-2-alkylcarbamoylvinyl]benzo[b]furans ((E)-9d, (Z)-15, (E)-32, -33, (E/Z)-34) for LTB₄ receptor (BLT₁, BLT₂) inhibitory activity^{*a*}

			С С Н И С С О Н О С С Н 3 С С Н 3 С С Н 3 С С Н 3 С С Н 3 С С Н 3 С С Н 3 С С С Н 3	Br (Z)-	OC N-R ³ R ⁴	OR ² (E)-32, -33, (E/)	H₃ ^{~~} CO N−R ³ R ⁴ Z r34		
						Inhibition (%)/10 µM		$IC_{50}/\mu M$	
Compound	Туре	\mathbf{R}^{1}	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	BLT ₁	BLT ₂	BLT ₁	BLT ₂
(<i>E</i>)-9d	С					6.5	20.8		
(<i>E</i>)-9d (<i>Z</i>)-15b	C D	Cl		C ₂ H ₅	C ₂ H ₅	6.5 7.8	20.8 37.3		
(E)-9d (Z)-15b (Z)-15c	C D D	Cl Cl		C ₂ H ₅ -(CH ₂) ₂	C_2H_5 O(CH ₂) ₂ -	6.5 7.8 N. I.	20.8 37.3 15.4		
(E)-9d (Z)-15b (Z)-15c (Z)-15f	C D D D	Cl Cl OCH ₃		C ₂ H ₅ -(CH ₂) ₂ C ₂ H ₅	C ₂ H ₅ O(CH ₂) ₂ - C ₂ H ₅	6.5 7.8 N. I. 1.4	20.8 37.3 15.4 18.4		
(E)-9d (Z)-15b (Z)-15c (Z)-15f (E)-32	C D D A	Cl Cl OCH ₃	 CH(CH ₃)C ₆ H ₅	$C_{2}H_{5}$ -(CH ₂) ₂ $C_{2}H_{5}$ $C_{2}H_{5}$	$C_{2}H_{5}$ O(CH ₂) ₂ - C ₂ H ₅ C ₂ H ₅	6.5 7.8 N. I. 1.4 69.9	20.8 37.3 15.4 18.4 >100	2.88	0.68
(E)-9d (Z)-15b (Z)-15c (Z)-15f (E)-32 (E)-33	C D D A A	Cl Cl OCH ₃	 CH(CH ₃)C ₆ H ₅ O(CH ₂) ₃ COOC ₂ H ₅	$\begin{array}{c} C_{2}H_{5} \\ \textbf{-}(CH_{2})_{2} \\ C_{2}H_{5} \\ C_{2}H_{5} \\ H \end{array}$	$C_{2}H_{5}$ O(CH ₂) ₂ - C ₂ H ₅ C ₂ H ₅ C ₆ H ₄ (4-OCH ₃)	6.5 7.8 N. I. 1.4 69.9 1.7	20.8 37.3 15.4 18.4 >100 6.6	2.88	0.68
(E)-9d (Z)-15b (Z)-15c (Z)-15f (E)-32 (E)-33 (E)-34	C D D A A A	Cl Cl OCH ₃ —	 	$C_{2}H_{5}$ -(CH ₂) ₂ $C_{2}H_{5}$ $C_{2}H_{5}$ H $C_{2}H_{5}$	$\begin{array}{c} C_{2}H_{5} \\ O(CH_{2})_{2}- \\ C_{2}H_{5} \\ C_{2}H_{5} \\ C_{6}H_{4}(4\text{-}OCH_{3}) \\ C_{2}H_{5} \end{array}$	6.5 7.8 N. I. 1.4 69.9 1.7 21.9	20.8 37.3 15.4 18.4 >100 6.6 88.1	2.88	0.68

 (87.0°) than the original compound (type **B**). But, (*E*)-17c showed surprising selectivity for BLT₂, unlike the original type **B** compound. The inhibitory potency and selectivity of the type **E** compound might be affected by not only the conformation of the 2-alkylcarbamoyl-1-methyvinyl group, but also the chemical properties of the substituent group at the 3-position.

The novel 7-(2-alkylcarbamoyl-1-methylvinyl) compound (type **G**, (*E*)-**27a**) showed potent inhibitory activity for both BLT₁ and BLT₂; as did the 4-(2-alkylcarbamoyl-1-methylvinyl) compound (type **B**, (*E*)-**35**). The 2-alkylcarbamoyl-1-methylvinyl group of both (*E*)-**27a** and (*E*)-**35** are neighboring with the furan ring. This common stereochemical characteristic might exert similar inhibition activity.

Evaluation of the BLT_1 and/or BLT_2 inhibitors prepared in our current study is in progress to find novel anti-pancreatic cancer agents.

Experimental

All melting points were determined using a Yanako microscopic hot-stage apparatus and are uncorrected. ¹H-NMR, ¹³C-NMR and HMBC, HMQC spectra were obtained with a JEOL JNM-ECP400, JEOL JNM-ECP500 and a JEOL PMX60FT spectrometer with tetramethylsilane as an internal standard. MS spectra (MS, HRMS) were obtained using a JEOL JMS-700 EIMS spectrometer. Elemental analyses (EA) were performed using a

Table 4	Evaluations of	of 3-[(E)-2-	alkylcarban	noylvinyl]be	nzo[b]furan	s ((<i>E</i>)-21, -2	4, -26) for LTB ₄	receptor (BLT ₁	, BLT ₂) inhibitory activit	ty ^a
---------	----------------	--------------	-------------	--------------	-------------	------------------------	------------------------------	----------------------------	---	-----------------

		R ²			R ¹ R ² -N CO		
			(<i>E</i>)-21	(<i>E</i>)-24c	(<i>E</i>)-26		
					Inhibition (%)/10 μ M		
	Compound	Туре	\mathbb{R}^2	R ³	BLT ₁	BLT ₂	
	(<i>E</i>)-21j	F	Н	(CH ₂) ₂ C ₆ H ₃ (3,4-OCH ₃)	N. I.	44.9	
	(E)-21k	F	C_2H_5	C_2H_5	N. I	28.8	
	(<i>E</i>)-24c	F			2.0	8.9	
	(<i>E</i>)-26b	F	C_2H_5	C_2H_5	N. I.	N. I.	
	(<i>E</i>)-26c	F	-(CH ₂) ₂ O($(CH_2)_2$ -	N. I.	5.7	
N. I.: not inhibited."	Effect of calcium	mobilization	n by LTB ₄ (300	nM) in CHO-hBLT ₁ and CHO	O-hBLT ₂ cells.		

CHN CORDER MT-3 (Yanako). All organic extracts were dried over anhydrous $MgSO_4$. Column chromatography was carried out on Wakogel C-200. Thin layer chromatography was performed on a Merck silica gel plate (0.5 mm, 60F-254).

2-Acetyl-7-chloro-3-(4-chlorophenyl)benzo[b]furan (8a)

General procedure for 8b–8d, 20a–20f. To a suspension of AlCl₃ (2.0 g, 15 mmol) in chloroform (15 ml) was added dropwise acetyl chloride (0.20 ml, 2.8 mmol) under a N₂ atmosphere at 5 °C with stirring. A solution of **3a** (1.0 g, 3.8 mmol) in chloroform (10 ml) was added dropwise to the mixture at 5 °C, and the mixture was stirred at the same temperature for 1.5 h. The mixture was poured into ice water, and extracted with ethyl acetate. The organic layer was washed with brine and dried. The solvent was evaporated off. The residue was recrystallized from ethanol to give **8a** (0.45 g, 39.0%) as an orange solid (found: C, 62.83; H, 3.18. C₁₆H₁₀Cl₂O₂ requires C, 62.97; H, 3.30%); mp 145.6–146.8 °C; $\delta_{\rm H}$ (60 MHz; CDCl₃; Me₄Si) 2.64 (3H, s, CH₃), 7.25–7.28 (1H, m, 5-H), 7.46–7.54 (6H, m, 4-, 6-H, phenyl H); *m/z* (EI) 306 (M + 4, 10.83%), 304 (M + 2, 64.67), 304 (M⁺, 100.00).

In a similar manner to that described above, **3a** gave **8b**, **3b** gave **8c**, **7f** gave **8d**, **7a** gave **20a**, **20e**, **20f**, **7b** gave **20b**, **7d** gave **20c**, **7c** gave **20d**.

(*E*)-7-Chloro-3-(4-chlorophenyl)-2-[diethylcarbamoyl-1methylvinyl]benzo[*b*]furan ((*E*)-9b)

General procedure for 9a, 9c–9g, 21a–21o. To a suspension of NaH (60% in oil, 0.13 g, 3.3 mmol) in THF (10 ml) was added dropwise a solution of N,N-diethyl diethylphosphonoacetamide (0.74 g, 2.9 mmol) in THF (10 ml) under a N₂ atmosphere at -5 °C with stirring. The solution was stirred at the same temperature until it became clear. A solution of 8a (0.50 g, 1.6 mmol) in THF (10 ml) was added dropwise to the clear solution at 15 °C, and the mixture was stirred at 20 °C for 5 h. The reaction mixture was then quenched with saturated NH₄Cl solution and extracted with chloroform. The organic layer was washed with brine and dried. The solvent was evaporated off, giving a residue which was

recrystallized from ethyl acetate to give (*E*)-**9b** (0.23 g, 34.8%) as yellow needles (found: C, 65.54; H, 5.22; N, 3.48. $C_{22}H_{21}Cl_2NO_2$ requires C, 65.68; H, 5.26; N, 3.48%); mp 136.9–139.2 °C; $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 1.05 (3H, t, *J* 7.1, CH₂CH₃), 1.15 (3H, t, *J* 7.1, CH₂CH₃), 2.17 (3H, d, *J* 1.4, C=C(CH₃)), 3.22 (2H, q, *J* 7.3, CH₂CH₃), 3.42 (2H, q, *J* 7.8, CH₂CH₃), 6.60 (1H, q, *J* 1.4, C=C(*H*), 7.15 (1H, t, *J* 7.8, 5-H), 7.22 (1H, dd, *J* 7.8 and 0.9, 6-H), 7.33 (1H, dd, *J* 7.6 and 1.2, 4-H), 7.38 (2H, d, *J* 8.7, 2'-, 6'-H or 3'-, 5'-H); *m/z* (EI) 401 (M⁺, 63.46), 329 (100.00).

In a similar manner to that described above, **8a** gave **9a**, **9c**, **9d**, **8b** gave **9e**, **9f**, **8d** gave **9g**, **20a** gave **21a**, **21b**, **20b** gave **21c**–**21f**, **20c** gave **21g**–**21i**, **20d** gave **21j**–**21i**, **20f** gave **21m**–**21o**.

2-Bromo-3-ethylbenzo[b]furan (10)

To a solution of **7h** (1.0 g, 6.9 mmol) in chloroform (20 ml) was added dropwise *N*-bromosuccinimide (1.3 g, 7.5 mmol) in CH₃CN (20 ml) at -8 °C. The reaction mixture was stirred at the same temperature for 1 h. The reaction mixture was poured into water and extracted with chloroform. The organic layer was washed with brine and dried. The solvent was evaporated off, giving a residue which was purified by silica gel column chromatography (hexane) to give **10** (1.1 g, 68.8%) as a colorless oil: $\delta_{\rm H}$ (60 MHz; CDCl₃; Me₄Si) 1.24 (3H, t, *J* 7.32, CH₂CH₃), 2.67 (2H, q, *J* 7.32, CH₂CH₃), 7.00–7.60 (4H, m, 4-, 5-, 6-, 7-H); *m/z* (EI) 226 (44.12), 224 (M⁺, 44.12), 102 (100.00).

Compound (23) was prepared from 7i according to the procedure described for 10.

(*E*)-2-[2-[2-(3,4-Dimethoxyphenyl)ethylcarbamoyl]-1-methylvinyl]-3-ethylbenzo[*b*]furan ((*E*)-11b)

General procedure for 11a, 24a–24c. A mixture of 10 (0.63 g, 2.8 mmol), (E)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-butenamide (1.4 g, 5.6 mmol), palladium acetate (30 mg, 0.13 mmol), tri-o-tolylphosphine (90 mg, 0.30 mmol) and triethylamine (2.0 ml, 19.8 mmol) was heated at 90–100 °C for 7 h. The mixture was treated with ethyl acetate, and the insoluble portion was removed

by filtration. The filtrate was evaporated to dryness. The residue was poured into ice water, and extracted with ethyl acetate. The organic layer was washed with brine and dried. The solvent was evaporated off. The residue was purified with silica gel column chromatography [hexane-ethyl acetate (10 : 1)] to give a yellow solid. This solid was recrystallized from ethyl acetate to give (E)-11b (0.51 g, 46.4%) as pale yellow needles (found: C, 72.99; H, 7.06; N, 3.58. C₂₄H₂₇NO₄ requires C, 73.26; H, 6.92; N, 3.56%); mp 131.0–135.0 °C; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.29 (3H, t, J 7.3, CH₂CH₃), 2.63 (3H, d, J 1.5, CH=CCH₃), 2.84 (2H, t, J 7.0, NCH₂CH₂), 2.90 (2H, q, J 7.3, CH₂CH₃), 3.61 (2H, m, NCH₂CH₂), 3.87 (3H, s, OCH₃), 3.88 (3H, s, OCH₃), 5.60 (1H, t, J 5.5, NHCH₂CH₂), 6.27 (1H, d, J 1.1, CH=CCH₃), 6.76–6.78 (2H, m, 2'-, 6'-H), 6.83 (1H, d, J 8.4, 5'-H), 7.20-7.31 (2H, m, 5-, 6-H), 7.39 (1H, d, J 8.4, 7-H), 7.53 (1H, d, J 7.7, 4-H); m/z (EI) 393 (M⁺, 12.86), 164 (100.00).

In a similar manner to that described above, 10 gave 11a, 23 gave 24a-24c.

2-Formyl-7-methoxybenzo[b]furan (12)

A mixture of **7e** (2.8 g, 17 mmol) and SeO₂ (3.8 g, 34 mmol) in 1,4-dioxane (50 ml) was heated at 75 °C for 92 h. After the insoluble portion was filtered off, the filtrate was evaporated under reduced pressure. The residue was purified by silica gel column chromatography [hexane–ethyl acetate (10:1)] to give a pale yellow solid. This solid was recrystallized from ethyl acetate to give **12** (1.42 g, 46.7%) as yellow needles: mp 41.0–43.9 °C; $\delta_{\rm H}$ (60 MHz; CDCl₃; Me₄Si) 4.03 (3H, s, OCH₃), 7.04–7.53 (4H, m, 3-, 4-, 5-, 6-H), 9.91 (1H, s, CHO); *m/z* (EI) 176 (M⁺, 100.00).

Compound (25) was prepared from 7g according to the procedure described for 12.

(E)-2-Diethylcarbamoylvinyl-7-methoxybenzo[b]furan (13b)

General procedure for 13a, 13c, 26a-26c. To a suspension of NaH (60% in oil, 0.14 g, 3.4 mmol) in THF (10 ml) was added dropwise a solution of N,N-diethyl diethylphosphonoacetamide (0.77 g, 3.1 mmol) in THF (10 ml) under a N₂ atmosphere at $-8 \degree \text{C}$ with stirring. The solution was stirred until it became clear. A solution of 12 (0.3 g, 1.7 mmol) in THF (10 ml) was added dropwise to the clear solution at 20 °C, and the mixture was stirred at the same temperature for 4 h. The mixture was then quenched with saturated NH₄Cl solution and extracted with ethyl acetate. The organic layer was washed with brine and dried. The solvent was evaporated off, giving a residue which was recrystallized from ethyl acetate to give (E)-13b (0.30 g, 63.8%) as white needles (found: C, 70.29; H, 7.24; N, 5.07. C₁₆H₁₉NO₃ requires C, 70.31; H, 7.01; N, 5.12%); mp 86.6–88.7 °C; δ_H (400 MHz; CDCl₃; Me₄Si) 1.22–1.27 (6H, m, $CH_2CH_3 \times 2$), 3.51 (4H, q, J 6.9, $CH_2CH_3 \times 2$), 4.03 (3H, s, OCH₃), 6.85 (1H, m, Ar H), 6.86 (1H, s, 3-H), 7.02 (1H, d, J 15.0, vinyl H), 7.13–7.18 (2H, m, Ar H), 7.59 (1H, d, J 15.1, vinyl H); m/z (EI) 273 (M⁺, 46.62), 201(100.00).

In a similar manner to that described above, **12** gave **13a**, **13c**, **25** gave **26a–26c**.

2-(4-Chlorobenzoyl)-7-hydroxybenzo[b]furan (14e)

To a mixture of $AlCl_3$ (3.7 g, 28 mmol) and 1-dodecanethiol (3.3 ml, 14 mmol) in chloroform (100 ml) was added dropwise

a solution of **14d** (1.0 g, 3.5 mmol) in chloroform (50 ml) at -4 °C with stirring. The mixture was stirred at 20 °C for 22 h. The mixture was poured into water and extracted with chloroform. The organic layer was washed with brine and dried. The solvent was evaporated off, giving a residue which was purified by silica gel column chromatography [hexane–ethyl acetate (20 : 1)] to give **14e** (0.25 g, 26.3%) as a yellow solid: mp 212.2–217.5 °C; $\delta_{\rm H}$ (60 MHz; acetone- d_6 ; Me₄Si) 7.11–8.20 (8H, m, Ar H), 9.23 (1H, s, OH); m/z (EI) 274 (M + 2, 37.96%), 272 (M⁺, 100.00), 139 (62.44).

Compound (19i) was prepared from 19h according to the procedure described for 14e.

2-(4-Chlorobenzoyl)-7-(2-phenylethoxy)benzo[b]furan (14f)

A mixture of **14e** (0.2 g, 0.74 mmol), K_2CO_3 (0.2 g, 1.5 mmol), and (1-bromoethyl)benzene (0.15 ml, 1.1 mmol) in CH₃CN (100 ml) was stirred at 75 °C for 2.5 h. After the insoluble portion was filtered off, the filtrate was distilled under reduced pressure. The residue was purified by silica gel column chromatography [hexane-ethyl acetate (10 : 1)] to give **14f** (0.20 g, 71.4%) as a pale yellow oil: $\delta_{\rm H}$ (60 MHz; CDCl₃; Me₄Si) 1.76 (3H, d, *J* 6.4, CHCH₃), 5.61 (1H, q, *J* 5.9, CHCH₃), 6.79–8.17 (13H, m, Ar H); *m/z* (EI) 378 (M + 2, 16.61), 376 (M⁺, 46.81), 105 (100.00).

Compound (19j) was prepared from 19i according to the procedure described for 14f.

(*Z*)-5-Bromo-2-[1-(4-chlorophenyl)-2diethylcarbamoylvinyl]benzo[*b*]furan (15b)

General procedure for 15a, 15c–15l. To a suspension of NaH (60% in oil, 0.12 g, 3.0 mmol) in THF (10 ml) was added dropwise a solution of N,N-diethyl diethylphosphonoacetamide (2.0 g, 4.1 mmol) in THF (40 ml) under a N₂ atmosphere at -8 °C with stirring. The solution was stirred until it became clear. A solution of 14a (0.50 g, 1.5 mmol) in THF (20 ml) was added dropwise to the clear solution at 8 °C, and the mixture was stirred at the same temperature for 1.5 h. The mixture was then quenched with saturated NH₄Cl solution and extracted with ethyl acetate. The organic layer was washed with brine and dried. The solvent was evaporated off, giving a residue which was recrystallized from ethyl acetate to give (Z)-15b (0.20 g, 31.3%) as white needles (found: C, 58.29; H, 4.43; N, 3.19. C₂₁H₁₉BrClNO₂ requires C, 58.29; H, 4.43; N, 3.24%); mp 106.7–109.8 °C; δ_H (500 MHz; CDCl₃; Me₄Si) 1.08 (3H, t, J 7.2 CH₂CH₃), 1.27 (3H, t, J 6.9, CH₂CH₃), 3.39 (2H, q, J 7.4, CH₂CH₃), 3.52 (2H, q, J 7.4, CH₂CH₃), 6.26 (1H, s, C=CHCO), 6.63 (1H, s, 3-H), 7.25-7.27 (2H, m, 6- and 7-H), 7.38-7.39 (4H, br m, phenyl H), 7.64 (1H, d, J 1.8, 4-H); m/z (EI) 435 (M + 4, 19.34), 433 (M + 2, 73.51), 431 (M⁺, 54.93), 361 (100.00).

In a similar manner to that described above, 14a gave 15a, 15c, 14b gave 15d–15g, 14c gave 15h–15k, 14f gave 15l.

(*E*)-2-Acetyl-3-amino-4-[2-[2-(3,4-dimethoxyphenyl)ethylcarbamoyl]-1-methylvinyl]-7-methoxybenzo[*b*]furan ((*E*)-17c)

General procedure for 17a, 17b, 17d–17f, 19a–19g. A mixture of 16a (0.60 g, 2.1 mmol), (*E*)-*N*-[2-(3,4-dimethoxyphenyl)ethyl]-2-butenamide (0.63 g, 2.5 mmol), palladium acetate (24 mg, 0.10 mmol), tri-*o*-tolylphosphine (64 mg, 0.21 mmol) and triethylamine (20 ml) was heated at 90–100 °C for 31 h. The mixture was

treated with chloroform, and the insoluble portion was removed by filtration. The filtrate was evaporated to dryness. The residue was poured into ice water and extracted with chloroform. The organic layer was washed with brine and dried. The solvent was evaporated off, giving a residue which was purified by silica gel column chromatography [chloroform–ethyl acetate (10 : 1)] to give (*E*)-**17c** (0.28 g, 29.2%) as yellow needles (found: C, 66.16; H, 6.30; N, 6.23. C₂₅H₂₈N₂O₆ requires C, 66.36; H, 6.24; N, 6.19%); mp 176.4–177.7 °C; $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 2.51 (3H, s, COCH₃), 2.60 (3H, d, *J* 1.4, CH=CCH₃), 2.81 (2H, t, *J* 6.8, NCH₂CH₂), 3.60 (2H, m, NCH₂CH₂), 3.86 (3H, s, OCH₃), 3.87 (3H, s, OCH₃), 4.01 (3H, s, OCH₃), 5.55 (1H, brt, *J* 5.6, NHCH₂CH₂), 5.72 (2H, brs, NH₂), 5.74 (1H, q, *J* 1.4, CH=CCH₃), 6.73–6.75 (2H, m, 2'-, 6'-H), 6.81 (1H, d, *J* 8.7, 5'-H), 6.91 (1H, d, *J* 8.3, 6-H), 6.97 (1H, d, *J* 8.3, 5-H); *m/z* (EI) 452 (M⁺, 17.77), 244 (100.00).

In a similar manner to that described above, 16a gave 17a, 17b, 16b gave 17d–17f, 18a gave 19a, 19b, 18b gave 19c, 18c gave 19d–19f, 18d gave 19g.

2-Acetyl-3-acetylamino-4-bromo-7-methoxybenzo[b]furan (18a)

General procedure for 18b–18d, 19h, 30c. A mixture of 16a (1.0 g, 3.5 mmol) and acetyl chloride (0.37 g, 5.3 mmol) in tetrahydrofuran (50 ml) was heated at 60 °C for 8.5 h. The reaction mixture was poured into ice water, and the resulting precipitate was collected by filtration, then recrystallized from ethyl acetate to give 18a (0.84 g, 73.0%) as pale yellow needles (found: C, 47.86; H, 3.70; N, 4.26. C₁₃H₁₂BrNO₄ requires C, 47.87; H, 3.71; N, 4.29%); mp 235.3–237.4 °C; $\delta_{\rm H}$ (60 MHz; CDCl₃; Me₄Si) 2.25 (3H, s, COCH₃), 2.59 (3H, s, COCH₃), 4.02 (3H, s, OCH₃), 6.88 (1H, d, *J* 8.4, 6-H), 7.37 (1H, d, *J* 8.5, 5-H), 8.49 (1H, brs, NH); *m/z* (EI) 327 (M + 2, 20.51%), 325 (M⁺, 20.88), 283 (100.00).

In a similar manner to that described above, **16a** gave **18b–18d**, **17a** gave **19h**, **30a** gave **30c**.

5-Bromo-3-[4-(diethoxyphosphoryl)-4-diethylcarbamoylbutyryl]-2-methylbenzo[*b*]furan (22b)

To a suspension of NaH (60% in oil, 69 mg, 1.7 mmol) in THF (10 ml) was added dropwise a solution of ethyl diethylphosphonoacetamide (0.39 g, 1.6 mmol) in THF (10 ml) under a N₂ atmosphere at -10 °C with stirring. The solution was stirred until it became clear. A solution of 20e (0.30 ml, 0.87 mmol) in THF (20 ml) was added dropwise to the clear solution at 27 °C, and the mixture was stirred at the same temperature for 5 h. The mixture was then quenched with saturated NH₄Cl solution and extracted with ethyl acetate. The organic layer was washed with brine and dried. The solvent was evaporated off, giving a residue which was purified by silica gel column chromatography [chloroformethyl acetate (20 : 1)] to give (E)-22b (0.13 g, 63.8%) as pale yellow needles (found: C, 50.96; H, 6.09; N, 2.68. C₂₂H₃₁BrNO₆P requires C, 51.17; H, 6.05; N, 2.71%); mp 92.7–95.6 °C; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.13 (3H, t, J 7.2, NCH₂CH₃), 1.19 (3H, t, J 7.2, NCH₂CH₃), 1.32 (3H, t, J 6.8, OCH₂CH₃), 1.34 (3H, t, J 7.0, OCH₂CH₃), 2.32–2.51 (2H, m, COCH₂CH₂), 2.76 (3H, s, CH₃), 2.83–2.93 (1H, m, COCH₂CH₂), 3.06–3.14 (1H, m, COCH₂CH₂), 3.22–3.38 (2H, m, NCH₂CH₃), 3.45–3.55 (2H, m, NCH₂CH₃, CH), 3.61–3.70 (1H, m, NCH₂CH₃), 4.11–4.22 (4H, m, OC H_2 CH₃ × 2), 7.30 (1H, d, J 8.8, 7-H), 7.39 (1H, dd, J 8.6 and 2.0, 6-H), 8.08 (1H, d, J 2.2, 4-H); m/z (EI) 517 (M + 2, 30.34), 515 (M⁺, 30.23), 72 (100.00).

Compound (22a) was prepared from 20e according to the procedure described for 22b.

(*E*)-7-[2-[2-(3,4-Dimethoxyphenyl)ethylcarbamoyl]-1-methylvinyl]-2-ethoxycarbonylpropionyl-3-phenylbenzo[*b*]furan (27b)

General procedure for 27a, 27d, 31a, 31b. A mixture of 8c (0.43 g, 1.1 mmol), (E)-N-[2-(3,4-dimethoxyphenyl)ethyl]-2-butenamide (0.40 g, 1.6 mmol), palladium acetate (12 mg, 0.052 mmol), tri-o-tolylphosphine (32 mg, 0.11 mmol) and triethylamine (8.0 ml) was heated at 90-100 °C for 16 h. The mixture was treated with CHCl₃, and the insoluble portion was removed by filtration. The filtrate was evaporated to dryness. The residue was poured into water, and extracted with chloroform. The organic layer was washed with brine and dried. The solvent was evaporated off. The residue was purified by silica gel column chromatography [chloroform-ethyl acetate (5:2)] to give a yellow solid. This solid was recrystallized from methanol to give 27b (0.18 g, 29.5%) as yellow needles (found: C, 71.27; H, 6.22; N, 2.48. C₃₄H₃₅NO₇·1/4H₂O requires C, 71.13; H, 6.23; N, 2.44%); mp 145.6–147.4 °C; $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 1.23 (3H, m, OCH₂CH₃), 2.69 (2H, t, J 6.8, CH₂CH₂), 2.75 (3H, d, J 0.9, CH=CCH₃), 2.87 (2H, t, J 7.3, NCH₂CH₂), 3.25 (2H, t, J 6.9, CH₂CH₂), 3.62–3.66 (2H, m, NCH₂CH₂), 3.86 (3H, s, OCH₃), 3.87 (3H, s, OCH₃), 4.12 (2H, q, J 7.3, OCH₂CH₃), 5.92 (1H, t, J 5.5, NH), 6.51 (1H, d, J 0.9, CH=CCH₃), 6.77–6.84 (3H, m, 2'-, 5'-, 6'-H), 7.31 (1H, t, J 7.8, 5-H), 7.44-7.60 (7H, m, 4-, 6-H, phenyl H); m/z (EI) 569 (M⁺, 5.82%), 164 (100.00).

In a similar manner to that described above, 8c gave 27a, 27d, 30b gave 31b, 30c gave 31a. 27c and 27e were obtained in the usual manner from 27b and 27d, respectively.

Measurement of calcium mobilization in CHO cells

Evaluation for BLT₁ and BLT₂ receptor inhibitory activity was carried out according to a procedure reported previously.^{17,18}

Acknowledgements

This work was supported in part by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan for a "University–Industry Joint Research" Project (2004–2008). The authors thank the staff of the Instrument Analysis Center of Mukogawa Women's University for the ¹H-NMR and MS measurements and element analyses.

References

- 1 C. Brink, S. Dahlén, J. Drazen, J. F. Evans, D. W. P. Hay, S. Nicosia, C. N. Serhan, T. Shimizu and T. Yokomizo, *Pharmacol. Rev.*, 2003, 55, 195–227.
- 2 T. Yokomizo, T. Izumi, K. Chang, Y. Takuwa and T. Shimizu, *Nature*, 1997, **387**, 620–624.
- 3 T. Yokomizo, K. Masuda, K. Toda, T. Izumi and T. Shimizu, *Am. J. Respir. Crit. Care Med.*, 2000, **161**, S51–55.
- 4 T. Yokomizo, K. Kato, K. Terawaki, T. Izumi and T. Shimizu, J. Exp. Med., 2000, **192**, 421–431.
- 5 A. Toba, T. Yokomizo and T. Shimizu, Prostaglandins & Other Lipid Mediators, 2002, 68/69, 575–585.
- 6 T. Yokomizo, T. Izumi and T. Shimizu, Arch. Biochem. Biophys., 2001, 385, 231–241.

- 7 V. L. Ott, J. C. Cambier, J. Kappler, P. Marrack and B. J. Swanson, *Nat. Immunol.*, 2003, **4**, 974–981.
- 8 N. Miyahara, K. Takeda, S. Miyahara, C. Taube, A. Joetham, T. Koya, S. Matsubara, A. Dakhama, A. M. Tager, A. D. Luster and E. W. Gelfand, J. Immunol., 2005, **174**, 4979–4984.
- 9 C. Taube, N. Miyahara, V. Ott, B. Swanson, K. Takeba, J. Loader, L. D. Shultz, A. M. Tager, A. D. Luster, A. Dakhama and E. W. Gelfand, *J. Immunol.*, 2006, **176**, 3157–3164.
- 10 W. Tong, X. Ding, R. Hennig, R. C. Witt, J. Standop, P. M. Pour and T. E. Adrian, *Clin. Cancer Res.*, 2002, 8, 3232–3242.
- 11 X. Ding, M. S. Talamonti, R. H. Bell, Jr. and T. E. Adrian, Anti-Cancer Drugs, 2005, 16, 467–473.
- 12 R. J. Aiello, P. A. Bourassa, S. Lindsey, W. Weng, A. Freeman and H. J. Showell, Arterioscler., Thromb., Vasc. Biol., 2002, 22, 443–449.
- 13 K. Subbarao, V. R. Jala, S. Mathis, J. Suttles, W. Zacharias, J. Ahamed, H. Ali, M. T. Tseng and B. Haribabu, *Arterioscler.*, *Thromb.*, *Vasc. Biol.*, 2004, 24, 369–375.
- 14 A. Hashimoto, H. Endo, I. Hayashi, Y. Murakami, H. Kitasato, S. Kono, T. Matsui, S. Tanaka, A. Nishimura, K. Urabe, M. Itoman and H. Kondo, *J. Rheumatol.*, 2003, **30**, 1712–1718.
- 15 W. Shao, A. Del Prete, C. B. Bock and B. Haribabu, J. Immunol., 2006, 176, 6254–6261.
- 16 N. D. Kim, R. C. Chou, E. Seung, A. M. Tager and A. D. Luster, J. Exp. Med., 2006, 203, 829–835.
- 17 K. Ando, E. Tsuji, Y. Ando, J. Kunitomo, M. Yamashita, S. Ohta, T. Nabe, S. Kohno, T. Yokomizo, T. Shimizu and Y. Ohishi, *Org. Biomol. Chem.*, 2004, 2, 3427–3431.
- 18 K. Ando, E. Tsuji, Y. Ando, J. Kunitomo, R. Kobayashi, T. Yokomizo, T. Shimizu, M. Yamashita, S. Ohta, T. Nabe, S. Kohno and Y. Ohishi, *Org. Biomol. Chem.*, 2005, **3**, 2129–2139.
- 19 M. S. Malamas, J. Sredy, C. Moxham, A. Katz, W. Xu, R. McDevitt, F. O. Adebayo, D. R. Sawicki, L. Seestaller, D. Sullivan and J. R. Taylor, *J. Med. Chem.*, 2000, **43**, 1293–1310.
- 20 C. J. Moody, K. J. Doyle, M. C. Elliott and T. J. Mowlem, J. Chem. Soc., Perkin Trans. 1, 1997, 2413–2420.
- 21 W. T. Brady, Y.-S. F. Giang, A. P. Marchand and A.-H. Wu, J. Org. Chem., 1987, 52, 3457–3461.
- 22 W. T. Brady and Y.-Q. Gu, J. Heterocycl. Chem., 1988, 25, 969-971.

- 23 J. Boutagy and R. Thomas, Chem. Rev., 1974, 74, 87-99.
- 24 N. Matsuura, Y. Yashiki, S. Nakashima, M. Maeda and S. Sasaki, *Heterocycles*, 1999, **51**, 975–978.
- 25 J. K. F. Geirsson, B. O. Gudmundsson and R. Sigurdardottir, *Acta Chem. Scand.*, 1993, **47**, 1112–1116.
- 26 F. R. Heck, Organic Reactions, John Wiley & Sons Publishers, New York, 1982, vol. 27, pp. 345–390.
- 27 P. D. Greenspan, R. A. Fujimoto, P. J. Marshall, A. Raychaudhuri, K. F. Lipson, H. Zhou, R. A. Doti, D. E. Coppa, L. Zhu, R. Pelletier, S. Uziel-Fusi, R. H. Jackson, M. H. Chin, B. L. Kotyuk and J. J. Fitt, *J. Med. Chem.*, 1999, **42**, 164–172.
- 28 M. Zaidlewicz, A. Chechlowska, A. Prewysz-Kwinto and A. Wojtczak, *Heterocycles*, 2001, 55, 569–577.
- 29 J. P. Bachelet, P. Demerseman, R. Royer, R. Cavier and J. Lemoine, *Eur. J. Med. Chem.*, 1982, **17**, 323–325.
- 30 V. Pestellini, A. Giolitti, F. Pasqui, L. Abelli, C. Cutrufo, G. De Salvia, S. Evangelista and A. Meli, *Eur. J. Med. Chem.*, 1988, 23, 203–206.
- 31 M. L. N. Rao, D. K. Awasthi and D. Banerjee, *Tetrahedron Lett.*, 2007, 48, 431–434.
- 32 K. Ando, Y. Akai, J. Kunitomo, T. Yokomizo, H. Nakajima, T. Takeuchi, M. Yamashita, S. Ohta, T. Ohishi and Y. Ohishi, *Org. Biomol. Chem.*, 2007, 5, 655–663.
- 33 Compound (*E*)-17c formula: $C_{25}H_{28}N_2O_6$, formula weight: 452.51, crystal color, habit: colorless, needle, crystal dimensions: $0.35 \times 0.20 \times 0.10$ mm, crystal system: monoclinic, lattice type: C-centered, indexing images: 3 oscillations @ 180.0 seconds, detector position: 127.40 mm, pixel size: 0.100 mm, lattice parameters: a = 33.4101(8) Å, b = 5.07911(13) Å, c = 27.9188(7) Å, $\beta = 101.8321(14)^\circ$, V = 4637.0(2) Å³, space group: C2/c (#15), Z value: 8, D_{calc} : 1.296 g cm⁻³, F_{000} : 1920.00, μ (CuK α): 7.671 cm⁻¹, R1 = 0.0448 for 4197 observations, 50% probability chosen for the ellipsoids.
- 34 D. J. McCabe, S. M. Bowen and R. T. Paine, Synthesis, 1986, 4, 319.
- 35 K. Ando, E. Tsuji, Y. Ando, N. Kuwata, J. Kunitomo, M. Yamashita, S. Ohta, S. Kohno and Y. Ohishi, Org. Biomol. Chem., 2004, 2, 625–635.
- 36 P. C. Astles, T. J. Brown, F. Halley, C. M. Handscombe, N. V. Harris, T. N. Majid, C. McCarthy, I. M. McLay, A. Morley, B. Porter, A. G. Roach, C. Sargent, C. Smith and R. J. A. Walsh, *J. Med. Chem.*, 2000, 43, 900–910.